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Back to Normal?
We might have heard this 
before, but it’s kind of feel-
ing like we’re getting back to 
normal, after a roller coaster 
ride during various waves of 
the pandemic. It finally sank 
in recently when giving a GIS 
class and being able to walk 
around the lab assisting stu-
dents; suddenly it felt back to 
normal. We certainly learned 

some new tricks being forced to experiment with online tools, not just in the 
classroom but also for collaborative research, or even increasing attendance 
at research presentations with a Zoom option. And I’ve found that coding 
classes actually work better online, since it’s easier to debug code.  But for 
most classes, the personal connection we get when face to face is really im-
portant, and field research when having to isolate in separate vehicles never 
worked well.

Of course, nature (and social nature) has kept on throwing challenges and 
things to study our way. During the pandemic we’ve also gone through a 
major drought with record wildfires. And now we’re watching record snow 
accumulations melt, probably leading to record flooding. The interplay of mul-
tiple geographic systems at multiple scales is providing no end of puzzles to 
solve. As a geomorphologist, I’m pretty excited to see the effects of fluvial 
dynamism this summer, and am happy to have the tools to study, measure, 
and model the resulting landscapes.

Jerry Davis, Director, CSU GIS Specialty Center
San Francisco State University
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Monitoring Bull Kelp Growth
in a Farm System Using an Unoccupied Aerial Vehicle 

Humboldt

Bull kelp (Nereocystis leutkeana) is a staple seaweed 
along the west coast of North America, providing 
habitat and resources for nearshore fisheries and car-
bon-rich debris when strong storms dislodge the kelp 

and transport it to the deep sea or upon beaches (Graham, 
Dayton, and Erlandson 2003; Springer et al. 2007). In addi-
tion to ecological services, it has traditionally been harvested 
for food, fishing line, containers and other items by the First 
Peoples of the northwest (Turner 2001). Since 2015, there have 
been significant losses in kelp along the northern California 
coastline from marine heatwaves and the decline of urchin 
predators such as the sunflower sea star (Pycnopodia helian-
thoides), which has enabled booming urchin populations and 
relentless herbivory on the kelp (Rogers-Bennett and Catton 
2019). To rebuild resilience in this region, many restoration 
strategies are ongoing, including the removal of urchins, 
transplanting kelp directly and limiting harvest (Gleason et al. 

2021; Ward et al. 2022; Ray et al. 2022). Farming kelp offers 
another avenue to build resilience through removing harvest 
pressure on wild stock and introducing the nutrient-ex-
tractive properties of kelp to the locality (Kim et al. 2017). 

The cultivation of bull kelp has been tried along the West 
Coast, mainly in Alaska (McDowell-Group 2017; Stopha 
2020). These ocean farming techniques originated in 
Asia with various other seaweeds, but the practices have 
recently become prominent along the northeast coast of 
the United States (Kim et al. 2017). This growth has been 
expedited through the efforts of GreenWave, a non-profit 
organization based on the East Coast which provides 
training and tools to develop more regenerative ocean 
farms (GreenWave n.d.). The concept gained traction largely 
because it requires zero input of water or fertilizer, and it 
removes nutrients and carbon from the water (Duarte 2017; 
Chopin et al. 1999; Troell et al. 1999). 

In Humboldt Bay, pre-permitted leases allowed for the 
establishment of two adjacent kelp farms, constituting 
the first open-water, commercial seaweed farms in 
the state. The first is owned by California Polytechnic 
University, Humboldt (originally name and hereafter, the 
“HSU ProvidenSea farm”), and the second is owned by 
GreenWave (GW, hereafter, the “GW farm”) and operates 
in partnership with Hog Island Oyster Company, The 
Nature Conservancy, and Sunken Seaweed. Bull kelp 
growth in a bay setting has not been well documented and 
even cultivating the kelp on farms in Alaska has proved 
challenging (M. Stanley, personal communication, February 
22, 2022). One of the major costs in farming is consistent 
in situ monitoring of the lines, which may be reduced with 
remote monitoring.

Our objective is to develop a cost-effective, high-
resolution method of monitoring bull kelp growth in farm 
systems in a bay. To achieve this, we used Unoccupied 
Aerial Vehicle (UAV), also known as drones, to survey bull 
kelp farms in Humboldt Bay.

This study used imagery collected from UAV surveys over 
kelp farms in Humboldt Bay approximately every two weeks 
between March 10th and May 31st, 2022. The GW farm 
was seeded in early March 2022 and the HSU ProvidenSea 
farm was a few days later. The UAV used was a DJI Mavic 
2 Pro with the standard, integrated Hasselblad camera. All 
the imagery used in this study were acquired in the visible 
spectrum (3-band) because use of color imagery (versus 

continued on page 5

Figure 1: Configuration of the two kelp farms in Humboldt Bay, in 
northern California.
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Analyzing Spatial Mismatch Of Domestic Violence Shelter Sites And 
Measuring Victim Costs From Misallocation 

San Marcos

continued on next page

I t is eye-opening that far more animal shelters exist in the 
U.S. than shelters for battered women and their children; 
especially since domestic violence is the leading cause of 
homelessness for America’s women and children (Ameri-

can Civil Liberties Union, 2005).  Often, victims find that con-
fidential shelters are full and standard homeless shelters are 
not equipped to deal with the sensitive needs and safety that 
domestic violence victims require. 

In a one-day survey done in September 2019 from 96 
participating shelter programs in California, there were 1,236 
unmet requests for services due to a lack of resources 
available. Of these unmet requests, 51% (630) were for 
housing (National Network to End Domestic Violence, 
2020). Many domestic violence victims depend on shelter 
services to escape their violent partners, which is why these 
resources play a vital role in victim outcomes. Therefore, it 
is important to analyze if shelters are placed efficiently for 
those in need. Ideally, the supply of services (beds available) 
should be geographically and proportionately matched with 
areas of demand (incident calls). Without much research 
on the geographic placement of shelter services for victims 
of domestic violence, this study seeks to explore how 
appropriately supply and demand of services are spatially 
matched across California. Domestic violence victim costs 
associated with any mismatch or misallocation of resources 
are then calculated to give perspective of the impact it can 
have on victims. 

Data for this project were collected from several sources 
including but not limited to the California Department 
of Justice, U.S. Census Bureau, KidsData.org, and the 
Department of Housing and Urban Development (HUD). 
Variables include total domestic violence calls per city across 
California (2020), population census data (2020), and domestic 
violence emergency shelter locations with bed count data 
(2020). The mapped shelter locations are the public mailing 
addresses of the shelters, which is either their intake location 
or P.O. box. This location is within the same city as the shelter 
itself. However, the address location where victims are housed 
is kept confidential to ensure their safety and protection. A 
report from the California Research Bureau on the prevalence 
of domestic violence estimated that as of 2014 there were 
112 emergency domestic violence shelters in California. This 
study includes 115 shelters, providing support that all shelters 
have been included. Using ERSI’s ArcMap software, shelter 
locations with their corresponding annual number of available 

beds was mapped to model 
supply for services. Demand 
for services in each city was 
modeled using the annual 
number of incident calls to 
police. The data at the city level 
provide an intermediary step in 
the final analysis, described in 
more detail below. As such, the 
city data is not visualized in a 
map. However, to provide more 
general context for domestic 
violence across the state 
of California, the aggregate 
number of calls and shelter beds 
available are provided in Figure 2 and Figure 3.  

Spatial mismatch theory began with the early works of John 
Kain (1964, 1968) to identify disparity between urban jobs and 
black residents. Spatial mismatch is defined in this research 
as the geographical separation between domestic violence 
victims and shelter services within city boundaries across 
counties. It is measured by the unevenness in the proportional 
distributions of the two. To calculate spatial mismatch, a 
modified version of the Dissimilarity Index was used. The 
Dissimilarity Index is often referred to as the Spatial Mismatch 
Index (SMI) due the fact it “is commonly used to measure 
spatial mismatch because it calculates the disproportionality 
of two groups in each areal unit of a city or metropolitan 
area” (Eom, 2022). The SMI has been applied to measure 
an abundance of disparities such as immigration, plant life, 
hazardous materials, and even irrigation topics. The formal 
equation for the dissimilarity index is: 

Where i = (1…, n) refers to a given geographic areal unit, xi and 
yi are two groups of interest, and X and Y are the total sums 
of each group in a larger geographic area (Eom, 2022; Liu & 
Painter, 2011). The modified SMI equation used for this study 
is represented as:

Where i= (1…, n) refers to the city (i) located within the larger 
geographic county unit; Si is the number of victims housed 

by shelters in city (i); S is the number of victims housed by 
shelters in the corresponding county; Vi is the number of 
victims in city (i) measured by number of domestic violence 
calls; and V is the number of victims in the corresponding 
county. 

As written, the SMI ranges between 0 (perfect balance) 
and 1 (perfect imbalance). Multiplying the SMI by 100 is 
interpreted as the percentage of either victims or shelters 
that would need to be relocated to achieve perfect balance 
in the distribution of services within the county. There 
are limitations with the use of the SMI since it does not 
consider the physical distance between shelters and 
victims—granted this is not an accessibility study and the 
aggregate call data does not allow for it. Rather, the SMI 
focuses on the proportional distribution among geographic 
subunits in a larger metropolitan area.  In other words, the 
SMI measures the imbalance between supply and demand 
of shelter services across cities within each county. To take 
an extreme example, suppose that all victims resided in 
one city of a county while all shelters were in a different 
city. Whether these two cities are one mile apart from 
one another or 30 miles apart will not influence the index 
score. In both instances, the index for the county would 
be equal to 1, implying perfect imbalance. Nonetheless, 
as a summary measure, the SMI does allow uniform 
comparisons across geographic areas and has ease of 
interpretation.

Furthermore, it is important to remember that the supply 
of shelter services is far less than the demand for services in 
almost every county across California. However, the SMI is 

Click on any figure below to enlarge.

Figure 2: County 
Aggregate Annual 
Domestic Violence Calls 

Figure 3: County Aggregate 
Annual Emergency 
Domestic Violence Beds 
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Analyzing Spatial Mismatch Of Domestic Violence Shelter Sites And Measuring Victim Costs From Misallocation continued from previous page

not simply measuring whether each victim has a bed available 
to them. Rather, it is providing a measure of the proportionality 
of victims to shelter services. For example, within a given 
county if 15% of the total victims are in City A, then 15% of 
the shelter bed supply should also be City A. This ensures 
that all victims in the county have an efficient and equitable 
opportunity to receive services when they are proportionately 
distributed. 

The analysis results give an SMI score for each county in 
California. These index scores are mapped in Figure 1. The 
counties in dark green represent the highest degree of spatial 
mismatch between demand and supply of domestic violence 
services, implying problematic areas, while the counties in 
light green show a proportionally adequate distribution of 
resources. Out of all 58 counties in California, eleven have 
a spatial mismatch index value of zero. For these counties, 
shelter services are in the same city/cities where calls for 
help were reported. Also, eight of the eleven counties have 
a greater annual supply of shelter beds than the number of 
calls for help. The three exceptions to this are San Francisco, 
Mariposa, and Sutter counties. In contrast, eight counties have 
a SMI value of one, representing perfect mismatch between 
domestic violence demand and shelter resources. Five of 
these seven counties had no shelters located within their 
borders (Alpine, Colusa, Mono, Sierra and Yuba) but did have 
calls for help. The other two counties, Calaveras and Plumas, 
had shelters but they were all located in a different city than 
where calls for help were reported. All of these counties are 
fairly small in terms of population and mainly rural, which 
may explain the lack of service supply coverage across the 
county. Besides the extreme cases of an SMI score of 0 or 
1 described above, the counties with the lowest SMI scores 
include El Dorado (0.06), Tehama (0.10), Madera (0.13), Shasta 
(0.15), Santa Cruz (0.15), Napa (0.16), and Fresno (0.19). These 
counties have less than 20% of spatial mismatch occurring. 
Counties with high SMI scores include Placer (0.94), Lake 
(0.85), San Mateo (0.85), Contra Costa (0.83), San Bernardino 
(0.81), and Riverside (0.76). All of which have more than 75% 
of spatial mismatch occurring. 

The main purpose of measuring the spatial mismatch 
is to calculate the number of “underserved” victims (i.e., 
those currently not appropriately or proportionately matched 
to services). This information is then used to estimate 
the economic costs victims may suffer because of the 
misallocation of resources in shelter placement. Victim 
cost data was originally sourced from a 1995 study on the 
health and productivity costs per victim, available from the 
Centers for Disease Control (CDC), and then updated to what 

current costs were in 2020. The total estimated costs from 
misallocation of domestic violence shelter services across 
California is estimated to be between $528 million and $629 
million dollars. A summarized breakout of these direct costs 
is shown in Table 1. A full breakout of each cost category is 
available upon request.

The implication of this study is that the spatial distribution 
of social services, specifically domestic violence shelter 
services, has real effects on society. When shelter services 
are not distributed efficiently, meaning proportionately 
matched to the demand for services in that area, victims 
in the mismatched areas are underserved and suffer the 
costs associated with domestic violence. Reducing these 
spatial mismatches between the supply and demand of 
resources can help reduce victim costs by ensuring victims 
have equitable opportunities to seek resources regardless 
of where they live. A potential solution for cities that do 
not have the current ability to expand shelters, may be 
to outsource services to safe places such as hospitals, 
secure hotels, or community living spaces. This may work 
especially well for rural areas where it is difficult, and perhaps 
inefficient, to provide multiple shelter sites across the region 
due to low population densities. Outsourcing the services 
would save on the startup and overhead costs needed to run 
a shelter, while still providing the security that victims need to 
get on their feet.  Other counties with high degrees of spatial 
mismatch would better serve domestic violence victims by 
appropriately matching their shelter services to the demand 
within each city. D
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color-infrared) is thought to be more effective in penetrating 
water and detecting submerged kelp (Jensen, Estes, and 
Tinney 1980). The UAV was flown at an approximate altitude of 
46 meters above ground level, to maximize both efficiency and 
resolution. The flight path, altitude, image overlap (80% front 
and side) and speed (11 kilometers per hour) were all preset in 
DroneDeploy Pro. Surveys were performed at opportune times, 
with ideal conditions including minimal wind, low and slack 
tide, low sun angle, and no low-lying fog (Joyce et al. 2019).

The UAV takes hundreds of individual images along the 
survey path at set distances to achieve the preset overlap. 
DroneDeploy Pro was used to process the images to build an 
orthomosaic, or a seamless image of the entire site, based on 
similar points, or “tie points” in the image. Based on conditions 
during the survey, the amount of kelp visible, floating items 
in the imagery, and several other factors, the resulting 
orthomosaic would sometimes have obvious defects. If so, the 
area with defects would be eliminated from the orthomosaic 
using geoprocessing tools in Esri’s ArcGIS Pro (version 2.8.3; 
ArcGIS). In ArcGIS all the orthomosaics were further clipped to 
an extent directly surrounding the lines to reduce noise from 
surrounding water and other visible features.

To classify kelp from the UAV imagery, several classification 
methods were tried on one orthomosaic from May 31st, 2022. 
First, with the original red, blue, green (RGB) orthomosaic, 
we performed a supervised classification to separate the 
kelp from water, using a support vector machine algorithm 
(Huang, Davis, and Townshend 2002). To train the algorithm 
we provided manually digitized training samples of 3 classes: 

“water”, “kelp”, “buoy”. Second, we ran an unsupervised 
classification, requesting 3 classes to be automatically 
generated based on distinguishing spectral signatures.  

We also created an index from the original RGB 
orthomosaic subtracting the blue band from the red 
(Equation 1), as it was found by KC Cavanaugh to be the 
best in distinguishing kelp from seawater in RGB imagery 
(Cavanaugh et al. 2021). We applied the same supervised and 
unsupervised classifications to this new indexed orthomosaic. 
Then, we applied a binary threshold classification in which 
we tried a range of pixel values which best split the kelp and 
water according to a visual assessment of a histogram of the 
indexed orthomosaic’s pixel values.  

Equation 1. Index = Red – Blue
The accuracy assessment was performed in ArcGIS using 

99 equalized stratified random points (N=33 per class). The 
classified results were assigned to each point. To build a 
reference dataset, we added the class that each point fell 
on based on the original RGB imagery. The performance 
differences between the classified results and these reference 
results were then computed with a confusion matrix. This 
matrix outputs three metrics, two of which were specific 
to accuracy within the kelp class. Producer accuracy is an 
indicator of false negatives while user accuracy indicates 
false positives of classified kelp. The third metric, the kappa 
statistic, provides a score representing the overall performance 
of the classification, including all three classes. The best 
performing classifier was selected and applied to all the other 
survey orthomosaics. The area of kelp classified on each 

line was calculated from the results of the classification. 
To determine variation in classified kelp resulting from the 
differing tidal condition across all surveys, the relationship 
between the amount of kelp classified and the tidal 
condition during each survey was plotted.

The imagery from five surveys between April 1st and May 
31st were used in the analysis. Only lines from GW’s farm 
were analyzed due to repeated defects in the generated 
orthomosaics along the HSU ProvidenSea farm lines. 
The best performing classifier was the binary threshold 
applied to the Red-Blue indexed orthomosaic (Table 1). 
The thresholds selected were unique to each survey’s 
orthomosaic. The resulting kelp classifications from each 
survey are shown in Figure 2.

The area of classified kelp increased throughout time, 
however, on day 30 (May 1st) there is generally a peak in 
kelp (Figure 3). The tide during that survey is at the lowest 
amongst all the surveys, at 0.148 m. During the following 
survey (May 15th) the tide is the highest amongst all the 
surveys, at 1.266 m, and the area of classified kelp drops 
significantly for all the lines. On the final survey before the 
harvest, the tide is low again (0.179 m) but most lines still 
had less kelp than classified on May 1st. The greatest area 
of classified kelp is on line 2-1, with 23.6 m2 of kelp.  

From repeated UAV surveys to monitor cultivated bull 
kelp, we found an effective method of analyzing kelp growth 
remotely, using UAV and a binary threshold classification 
method. This work, although successful in capturing growth 
also identified problematic factors in surveying lines on 

Monitoring Bull Kelp Growth in a Farm System Using an Unoccupied Aerial Vehicle continued from page 2

continued on next page

Figure 2: The classified kelp from the best performing classification 
method (binary threshold from the Red-Blue index) applied to 
each of the 5 surveys on the GW farm.

 Click on either figure to enlarge.

Table 1: The results of the different classifications methods with the 
selected best performing one highlighted in yellow

Figure 3: The area of classified kelp on each line throughout the 5 
surveys, with the associated tide at the time of survey. 
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a farm, namely the effect of tides on visible kelp. It was also 
discovered that creating the orthomosaic was only successful 
when there was enough kelp growth visible at the water’s 
surface. A survey performed shortly after setting the seeded 
lines on the farms (March 11th, 2022) proved unsuccessful in 
the orthomosaic stage of processing and images capturing 
the HSU ProvidenSea lines, which were seeded later than GW 
lines, were also incapable of processing. The reduction in kelp 
area classified from the final survey (May 31st) may be a result 
of senescence of the kelp, observed during harvest. 

In classifying, the supervised method was relatively 
unsuccessful on either the original RGB or the Red-Blue 
indexed orthomosaic, earning the lowest performance metrics. 
We had chosen to train a class based on obvious color 
differences in the buoys, however, based on the unsupervised 
classification results, the “shadow” adjacent to the floating 
kelp (likely from submerged kelp) was more spectrally 
significant. The unsupervised classification applied on both 
orthomosaics had a higher total producer and user accuracy, 
thus may have offered a better option for distinguishing kelp, 
but the lower kappa value indicates poor performance in 
distinguishing the other classes. Regardless, this method 
may be more suitable since accuracy in the other classes is 
less important in this work, and it took considerably less time. 
Adding more classes may improve the results. D
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Examining Spatial Accessibility to 
Primary Healthcare Facilities in Los 
Angeles County

S patial accessibility has been defined as the relative 
ease by which the local residents at a given location 
can obtain a service that is provided at multiple facil-
ities (Langford, Higgs, and Fry 2016). Spatial acces-

sibility can quantify and highlight links, gaps, and inequalities 
between population centers (i.e., demand points) and urban 
facilities (i.e., supply locations), emphasizing the uneven spa-
tial distribution of supply facilities’ locations and population 
points. In light of this, measuring spatial accessibility to health-
care services has received growing attention from the public 
health and geospatial research communities.

Inadequate access to primary healthcare practitioners 
has been recognized as a key facilitator of overall population 
health, as poor access may result in avoidable health 
consequences (Bauer and Groneberg 2016). Within this 
context, it is essential for any healthcare program to guarantee 
an accessible network of primary healthcare practitioners. The 
effectiveness of such programs strongly relies on precise and 
reliable measures of spatial accessibility patterns so that the 
regions with poor access to primary healthcare providers may 
be identified. Measures of spatial accessibility can be used to 
direct federal and municipal resources and funds to the most 
underserved neighborhoods and serve as a benchmark for 
future service planning. (Langford, Higgs, and Fry 2016). 

Various procedures and metrics have been proposed 
and developed to assess spatial access, with the Two-Step 
Floating Catchment Area (2SFCA) method being one of the 
most popular and gaining prominence in the geospatial 
sciences. Developed by Luo and Wang (2003), the 2SFCA 
methodology is a derivative of the gravity model. It tackles 
two key features of spatial accessibility: i) proximity to service 
provider facilities (e.g., healthcare facilities) and ii) availability 
and capacity of services over space. In essence, the 2SFCA 
technique computes a spatial accessibility metric that is a ratio 
of supply and demand in a given geography, computing where 
these two interact according to the distance decay concept 
(Wang 2018). 

As suggested by the name of the technique, the 2SFCA 
is a two-step procedure. The first step concentrates on the 
service providers’ facilities by defining a catchment area (with 
a predetermined distance/time) for service providers and 
calculating the total population within each catchment area. 
This step then calculates a ratio of provider-to-population 

for each facility location. The second step focuses on the 
population centers. Here the catchment areas are generated 
for each population center, and the sum of all provider-
to-population ratios of the facilities that fall within the 
catchment area is calculated. The sum for each population 
center yields a metric that measures the relative spatial 
accessibility for each population (demand) location. 

The generalized 2SFCA applies the distance decay 
function to both steps of the method, which has a well-
established theoretical foundation in spatial gravity models. 
Accordingly, the generalized 2SFCA can be represented as 
follows: 

where Ai denotes the spatial accessibility index at the 
population location i (demand point i), where larger values 
of Ai indicate a higher (better) accessibility to provider 
locations and Rj  is the provider-to-population ratio at each 
provider location j. n is the total number of provider/supply 
locations [e.g., primary care locations] where j =1,2,…,n 
and m represents the total number of population locations 
(demand points) where i =1,2,…,m. Sj denotes the capacity 
of the supply at provider location j (e.g., number of primary 
healthcare physicians at location j). Pk represents the 
population at the location k that falls within the catchment 
(i.e., dki ≤ d0). d0 denotes user-defined travel time threshold 
(catchment size). And finally, f (dki) represents a distance 
decay function. In this research, we applied a Gaussian 
function that has been utilized widely in earlier studies (for 
example see: Tao, Cheng, and Liu 2020):

This research focuses on quantifying spatial accessibility 
to primary healthcare facilities for the general population in 
Los Angeles County, California. In this study, we compiled 

continued on next page

Figure 1: Spatial Distribution of Population and the Primary 
Healthcare Centers in Los Angeles County. 

Click on image to enlarge.

https://csugis.sfsu.edu
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Examining Spatial Accessibility to Primary Healthcare Facilities in Los Angeles County continued from previous page
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and used three different datasets: i) primary healthcare 
physicians/facilities locations, ii) population locations, and iii) 
transportation network datasets. The list of primary healthcare 
providers and facilities representing the supply locations 
was obtained from the Center for Medicare and Medicaid 
Services portal (“Medicare Provider Utilization and Payment 
Data: Physician and Other Practitioners | CMS” n.d.). On the 
demand side, Census Block Groups weighted mean centers 
of the population have been used to represent the population 
centers within the county. Finally, the transportation network 
dataset was created using ESRI North American Road dataset 
in ArcGIS Pro Network Analyst Extension. Figure 1 shows the 
distribution of the population and the locations and capacity 
of primary healthcare services within Los Angeles county. We 
chose a 30-minute catchment area (d0 in equations 1-3) for 
modeling the relationship between population and the primary 
physicians’ locations which conforms with previous research in 
healthcare spatial accessibility (Hu et al. 2020; Lin et al. 2021). 

Figure 2 shows the standardized variation of the spatial 
accessibility areas measures across the study area. The 
areas with higher accessibility scores (better or easier spatial 
access to primary care physicians) are concentrated in the 
core center of Los Angeles county, around the downtown 
area. This result reveals a higher accessibility measure around 
major arteries within the county. There are two visible higher 
accessibility along the North-South corridor of Interstate 
Highway 405 and Interstate Highway 110. Moreover, there 
are higher accessibility regions along the East-East corridor 
of Interstate Highway 10 and Ventura Freeway. In contrast, 
the lowest spatial accessibility scores are clustered primarily 
in periphery communities. These areas include the Canyon 
County and Humphreys neighborhoods of Santa Clarita, the 
Pearland neighborhood of Palmdale, and the Sunland-Tujunga 
neighborhood of Los Angeles.  

The 2SFCA proved to be a technique easily implemented 
within GIS, requiring only a few datasets. The technique 
produced simple and easily interpretable indices of supply-to-
demand ratios. This technique using the same datasets can be 
used and applied in other scenarios and locations, specifically 
in developing countries. D
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Figure 2: Spatial Accessibility to Primary Healthcare Facilities for 
Census Block Groups in Los Angeles County. 

Click on image to enlarge.
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Humboldt

Ecological Assessment of Restored 
Wetlands in California Central Valley 
Integrating UAS and Survey Data        
     

California’s Central Valley has lost over 95% of all de-
pressional wetlands and 98% of all riparian habitats, 
resulting in reduced water availability and quality 
(Garone 2011). Drained wetland areas, which have 

been predominantly replaced by agricultural croplands, cover 
roughly 3 million ha, over half of the Central Valley (CV). De-
cades of flood control measures, including the construction of 
countless reservoirs and water delivery canals has resulted in 
a heavily altered landscape experiencing skyrocketing water 
demands, usually to the detriment of natural water bodies 
including the state’s critically sensitive wetlands and streams. 
Every acre-foot of water is accounted for, and most remain-
ing wetlands are managed under strict hydrological regimes 
(Central Valley Joint Venture 2006). Water flowing through 
the dense network of channels crisscrossing the CV is used 
and re-used for irrigation purposes, accumulating ever in-
creasing concentrations of agrochemicals that diminish water 
quality further downstream. Many wetland habitats are 
recharged with this degraded water, which has had seri-ous 
negative impacts on wetland dependent wildlife (Rennie, 
1996). This study sought to examine the relationship between 
restored wetland quality and adjacent land use by applying 
spatial analysis techniques to quantify the number and density 
of drainage channel nodes to fertilized cropland. 

Over-fertilization, soil erosion and grazing, and agricultural 
runoff are major contributors to surface and groundwater 
contamination, posing serious threats to human and 
ecosystem health. To mitigate the effects of agriculture on 
surface water, the U.S. Department of Agriculture-Natural 
Resource Conservation Service (USDA-NRCS) encourages 
landowners to create, restore or enhance wetlands to provide 
ecosystem services such as water filtration, soil amendment, 
carbon sequestration, groundwater replenishment, and wildlife 
habitat (NRCS 2019). Few studies have examined water 
quality impacts on surface water from a spatial perspective. A 
team of scientists from Cal Poly Humboldt, led by Dr. Sharon 
Kahara, a wetlands and wildlife biologist investigated links 
between land use, water quality and wetland dependent 
wildlife including waterfowl and amphibians. The purpose of 
their research was to characterize and model restored wetland 
ecological functions building upon 15 years of data collected 
in the CV. Using the dynamic process modeling tool STELLA 
® (Systems Thinking and Experimental Learning Laboratory 
with Animation), Dr. Kahara and her team simulated restored 
wetland hydrology and nutrient dynamics as a function of 

vegetation coverage and growth. At the model’s core is a 
simple mass balance of daily hydrological inputs and outputs 
that include surface flows, precipitation and evapotranspiration 
(Fig. 1). The model in its present form does not account 
for groundwater exchange as there is little evidence of this 
exhibiting within the study area, but may become more 
apparent along the margins of the CV.  

The model assumes that water, the primary medium in 
which nutrient transformations take place, flows evenly across 
the restored wetland with no preferential flow or channeling 
patterns. All vegetation is assumed to be rooted and in contact 
with water resources, however growth is restricted only to 
times when water is present. The hydrology sub-models 
calculate the water level in each wetland (as the volume of 
water per square-meter of surface area) based on surface 
inflows, outflows, precipitation, and evaporation. Modeled 
water depths aligned well with empirical data collected at 
over 12 wetland sites between 2016-2020 (Fig. 2). Modeled 
hydrology emphasized the strong influence of artificial 
hydrology in restored wetlands of the CV as water depths 
could not be explained by natural precipitation, evaporation or 
overland flows alone. Such over-reliance on human 
intervention to maintain hydrology is a major shortcoming of 
restored wetland hydrology and reiterates previous findings 
that indicate a strong influence of California’s water regulators 
on wetland ecosystem services (Kahara et al., 2022). 

Unmanned aerial system (UAS) imagery was also monitored 
at eight privately managed restored wetlands in three regions 
of the Central Valley (Sacramento, Delta, and San Joaquin), 
once in the summer and fall, from 2020 to 2022 using a DJI 
Phantom 4 PRO (SZ DJI Technology Co., Ltd., Nanshan, 
China) flying at an average height of 120 m above ground 
height (AGH) with side and front overlaps of at least 80%. 
Ground Sample Distance (GSD) was 4 cm/px. Autonomous 
flight path plans for the aerial image collections were designed 
using the DroneLink application. A light drone (DJI Mavic Mini 
was flown at lower elevation (around 10 m AGH) for 
reconnaissance and assisted in vegetation species 
identification (view video compilation here). The product UAS 
image collection was processed to create orthomosaic images 
using the ortho mapping workspace within the ArcGIS Pro 
software (Esri, Redlands. California, USA). During this 
processing and prior to any orthomosaic creation and 
subsequent analysis, the adjustment tool was run to “stitch” 
the images to ensure accurate geometric transformation 
models (UCANR-IGIS, 2020).

Interannual phenological changes in wetland vegetation 
were calculated for 3-band (RGB data) UAS imagery collected, 
applying the Visible Atmospherically Resistant Index (VARI) as 
follows: 

VARI = (Green - Red) / (Green + Red - Blue)

Figure 1: Wetland budget indicating typical inputs and outputs of a 
restored wetland in California’s Central Valley.  

continued on next page

Figure 2: Modeled and empirical irrigated (A) and unirrigated 
(B) wetland water depths (black line) in Colusa, California from 
January 1, 2017 to December 31, 2017. Peak flows observed 
in measured water depths are likely the result of overland flows 
from the Colusa Weir due to above average precipitation in the 
early part of the year.

Click on image above to enlarge.

https://csugis.sfsu.edu
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Ecological Assessment of Restored Wetlands continued from previous page
Figure 3: UAS images at the 
Sugiyama wetland easement in 
San Joaquin during summer and 
Fall 2021:  summer orthomosaic, 
VARI, and % vegetation cover (a, 
b & c), fall orthomosaic, VARI, and 
% vegetation cover (d, e & f) Higher 
values (green) indicate healthy 
vegetation while low values (red) 
indicate bare soil, road or dead 
vegetation. 

Click on image to enlarge

The VARI estimates the fraction of vegetation in a scene 
with low sensitivity to atmospheric effects (Eng et al., 2019). 
This vegetation index formula was chosen for its ability to 
detect changes due to biomass accumulation and sensitivity 
to the amount of chlorophyll in leaves, while remaining 
accessible as images derived from a consumer grade RGB 
drone camera meets the requirements for VARI utilization (Eng 
et al., 2019).
    The objective of this study was to characterize and quantify 
seasonal differences in vegetation coverage at the Sugiyama 
wetland easement in San Joaquin using a simple vegetation 
index that derived from the UAS imagery.  Results of the VARI 
assessment at the Sugiyama wetland easement in San 
Joaquin are shown in Fig. 3. The vegetative cover at the 
Sugiyama wetland easement is about 8.82% (3.47 ha) and 
1.07% (0.42 ha) during summer and fall 2021 respectively. 
Less vegetation in the fall compared to the summer is likely 
the result of vegetation removal efforts (mowing) conducted by 
the landowners. Vegetation removal prior to fall flooding, 
referred to as moist soil management, is a recommended pre-
flooding treatment in easements managed for wintering 
waterfowl (Hagy and Kaminski, 2012).

This project also supported undergraduate and graduate 
students in acquiring field data collection and provided 
preliminary remote sensing experience. Dr. Madurapperuma’s 
intermediate remote sensing class (GSP 326) at California 
Polytechnic State University-Humboldt used a semi-
automated workflow (i.e. Object-Based Image Analysis) 
to produce an autonomous count of waterfowl while 
distinguishing three separate bird species in Colusa County, 
California using UAS imagery. The student’s project findings 
were showcased at the American Association of Geographers 
(AAG) Annual Meeting in 2021 (Hernandez et al., 2021), and 
the Annual Science Research Sessions at the South-Eastern 
University of Sri Lanka (Fisher et al., 2022). Flourishing 
waterfowl populations, particularly in late fall and early winter 
months, on restored wetlands have been linked to increased 
nutrient inputs (Kim et al., 2020), thus warranting this use of 
UAS for bird surveying.

Ongoing analysis focuses on the role of ecological factors 
at multiple spatial scales on native and invasive amphibian 
occupancy. The project is a graduate research thesis that 
employed landscape ecology and environmental DNA 
techniques to clarify the roles adjacent land use and site-
specific habitat characteristics affect occupancy dynamics of 
native species. D
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A Web-Based Multicriteria Spatial Decision Support 
System (SDSS) for Water Division Strategies

Northridge

Disadvantaged communities refer to those geographical 
areas that are heavily burdened by and suffer dispro-
portionately from a combination of socio-economical, 
health, and environmental factors. Identifying disadvan-

taged communities remains the main objective of most urban 
and regional development planning efforts and policy-making 
to allocate and direct state and local governments’ resources, 
funds, and subsidies. Within this context, the main objective of 
these types of spatial decision-making problems would be re-
vitalizing disadvantaged communities by allocating resources 
to ensure sustainable development and environmental justice 
(California Office of Environmental Health Hazard Assessment 
2017). 

Within this context, Water Service Providers (WSPs) 
areas can sometimes be considered at a disadvantage in 
communities that lack access to adequate water resources 
and infrastructure. This can be particularly true in low-
income or marginalized regions where water supply and 
treatment systems may be outdated or poorly maintained. 
Water Service Providers in disadvantaged communities face 
significant challenges in ensuring access to safe and reliable 
water supplies. Addressing these challenges will require a 
collaborative effort among stakeholders, including water 
providers, government agencies, and community members. 
Identifying, prioritizing, and ranking disadvantaged WSPs is 

paramount to facilitate their development better to serve their 
community with safe and reliable water.

Designating and identifying disadvantaged communities 
by nature is, in fact, a geospatial decision problem involving 
a broad set of evaluation criteria. Spatial decision problems, 
most often, involve a set of multiple, conflicting, and 
incommensurate evaluation criteria. The set of criteria in 
these problems is involved in the process of evaluation, 
ranking, and selection of the location alternative(s) that best 
serve the decision-making objectives. Within this context, 
spatial decision analysis or a GIS-based multicriteria 
decision analysis (MCDA) can be defined as a procedure 
to aggregate geospatial evaluation criteria and their relative 
importances into a final solution map. The solution map, in 
turn, can offer appropriate and valuable information and give 
insight into the decision-making problem. The integration 
of GIS and MCDA facilitates the decision-making process 
by allowing the participants (planners, administrators, or 
local citizens) to explore different aspects of the decision 
problem and articulate their preferences and judgments. In 
this setting, MCDA provides a mechanism for expressing 
decision-makers’ knowledge and priorities over the spatial 
problem for generating a rank order of alternatives in such a 
way that a compromise solution is identified. Implementing 
a web-based GIS and aggregating MCDA techniques can 
create a distributed and possibly collaborative environment. 

WebGIS-MCDA can provide an interactive tool for users to 
explore maps and spatial alternatives and their attributes 
and easily express their opinions about the spatial decision 
problem. Such environments enable decision-makers 
(experts or the general public) to input their preferences 
regarding the spatial problem based on different times – 
different locations of the spatial-temporal dimensionality of 
spatial decision-making (Boroushaki and Malczewski 2010).

This project focuses on the implementation of a web-
based multicriteria spatial decision support system 
(WebGIS-MCDA) for evaluating, prioritizing, and ranking 
a number of Water Service Providers within southern 
California in such a way that disadvantaged regions could 
be identified. The web-based decision tool has been 
designed and developed as a proof of concept on how 
MCDA techniques can be utilized for these types of spatial 
decision-making where the spatial units represent Water 
Service Providers (WSPs), as this project was contracted 
and supported by the CSU’s Water Resource and Policy 
Initiatives (WRPI). The WebGIS-MCDA application uses 
a client-server architecture approach to web-based GIS. 
It employs the ESRI Calcite Design System and ArcGIS 
JavaScript API on the client side and utilizes ArcGIS Online 
and its capabilities on the server side. The additional 
functionalities of MCDA techniques have been developed 
using a combination of JavaScript and jQuery (Figure 1). 

Figure 1: WebGIS-MCDA Application System Architecture.

continued on next page

Figure 2: WebGIS-MCDA Application Process Flow. 

https://csugis.sfsu.edu


12

cs
ug

is
.s

fs
u.

ed
u

All the geographic data (WSP boundaries and attributes) is 
stored on ArcGIS Online as a feature layer. There are 515 
WSPs considered in this project, with a set of 44 evaluation 
criteria that can be used in the decision-making process. 
The evaluation criteria cover a range of demographic and 
socio-economical attributes. The WSPs’ boundaries and their 
attribution have been created, compiled, and maintained by 
the Center for Geospatial Science and Technology at the 
California State University, Northridge.

The WebGIS-MCDA application facilitates the following 
major steps of spatial decision-making: i) selection of the 
evaluation criteria; ii) standardization of the criteria; iii) 
assigning criteria weights; and finally, iv) aggregating the 
evaluation criteria based on their relative weights using 
a decision rule or multicriteria decision algorithm (Figure 
2). In this framework, two major techniques for assigning 
criteria weights have been implemented, a fuzzy linguistic 
weighting scheme and a data-driven entropy-based weights 

calculation. Moreover, two MCDA aggregation algorithms 
have been developed and implemented for data aggregation: 
i) Weighted Linear Combination (WLC) and ii) the Technique
for Order of Preference by Similarity to the Ideal Solution
(TOPSIS) (see Boroushaki 2017). Figure 3 shows the output
ranking of the WSPs based on the selections and preferences
of a hypothetical decision-maker. In this case, the lower
the ranking, depicts the disadvantaged communities (water
service provider regions). The preliminary testing and
calibration of the implemented application are now complete,
and the WebGIS-MCDA application will be developed into a
more comprehensive decision-making tool in the next phase.
The WebGIS-MCDA application can be accessed at
https://www.csun.edu/~sboroushaki/WRPI/. D

ACKNOWLEDGMENT

This material is based upon work supported by the CSU’s 
Water Resource and Policy Initiatives (WRPI).

REFERENCES

Boroushaki, S. 2017. Entropy-based weights for multicriteria spatial de-
cision-making. Yearbook of the Association of Pacific Coast Geogra-
phers, 79: 168-187. 

Boroushaki, S., and J. Malczewski,  2010. Measuring consensus for 
collaborative decision-making: A gis-based approach. Computers, 
Environment and Urban Systems, 34(4), 322-332.

California Office of Environmental Health Hazzard Assessment. 2017. 
CalEnviroScreen 3.0. Retrieved  May 15, 2021, from https://oehha.
ca.gov/calenviroscreen/report/calenviroscreen-30

AUTHOR

Soheil Boroushaki
Associate Professor, Department of Geography
California State University, Northridge
soheil.boroushaki@csun.edu

Figure 3: WebGIS-MCDA Application User Interface. 
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